Flexibility Solutions & Barriers in the Danish Power Markets

DG-STORE webinar "Power Markets & Regulation on Flexibility" 26th october 2022

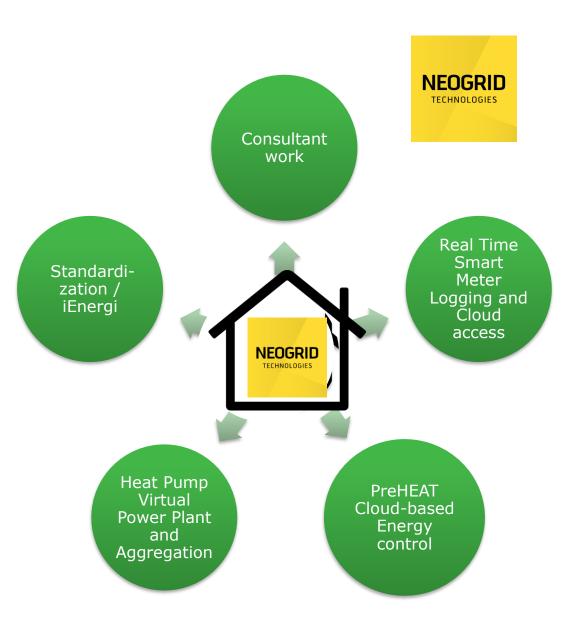
Agenda

- Heat pump connection
- Heat pump business models
- Flexibility
- Control Strategies
- Barriers and Neogrids business strategies

Neogrid Technologies ApS

Founded in 2009 in Aalborg, today 18 people

Focus areas:


- 24/7 control and monitoring of energy installations
- Model- og prognosis based MPC controllers for heat/ventilation/cooling
- Advanced online data analysis on buildings
- Platform for data collection and visualisation
- Smart Meters, IOT sensors, BMS systems, heat pumps etc.
- Aggregator services, i.e. pool control of heat pumps

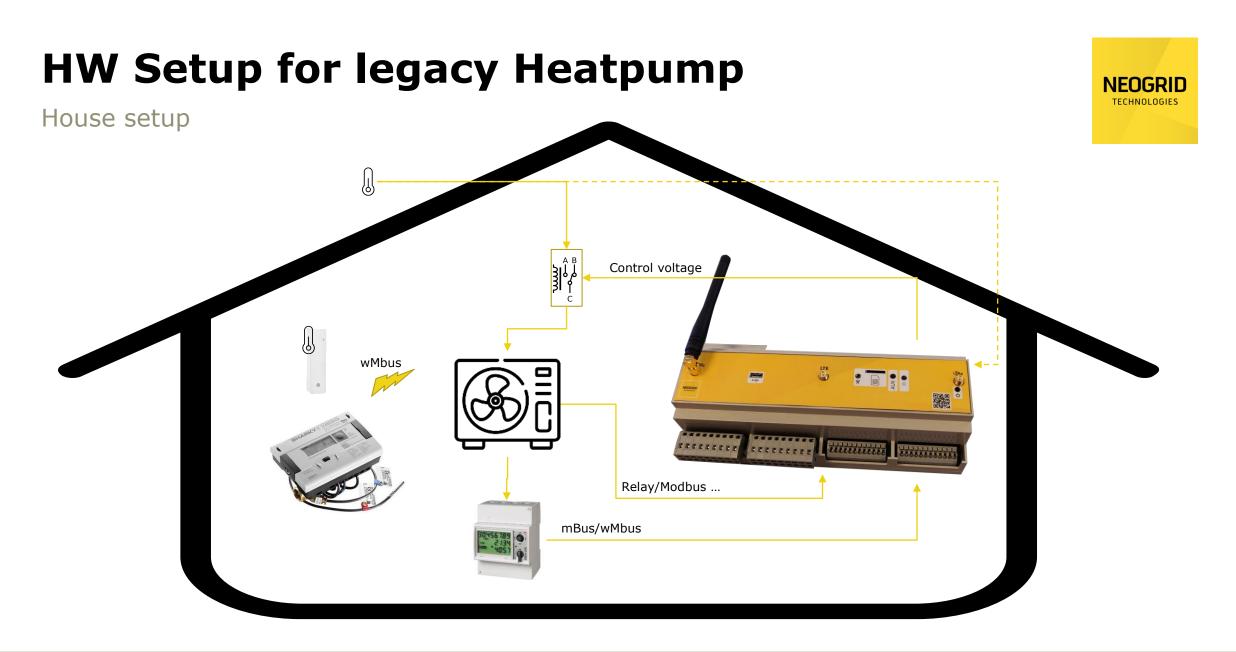
Collaboration-oriented

Experienced in research and demonstration (+20 projects until now)

PreHEAT solution:

- Active since 2016 in Denmark.
- Currently 24/7 on +400 apartment blocks
- \checkmark +50 houses and +5 schools, office buildings etc.

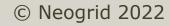
Background


Many research projects regarding control of heat pumps

- SDVP1 StyrDinVarmepumpe1 "controlyourheatpump" (2011-2013)
 - Retrofit and individual control of 300 ground source and air source heat pumps
- Smart Summer houses (2011-2013)
 - Control and monitoring of existing air source heat pumps
- Ready (2012-2014)
 - Pool control of heat pumps from StyrDinVarmepumpe
- SDVP2 StyrDinVarmepumpe2 (2013-2015)
 - SDVP1 + SOAP/XML for online XMPP Communications
- StyrDinVarmepumpe Connect
 - Standardisation work
- HPCOM (2014-2017)
 - Development of a HP-hub, standardisation of heat pump interfaces
- TotalFlex (2012-2016)
 - Description of flexibility by flex-offers
 - Demonstration of a market place for flexibility with the actors: house owner – DSO - BRP
- SmartCE2H (2019-): (booster) heatpump to energy communities
- OPSYS2 (2019-): Integration of heat pumps with a floor heating controller in a building

Heat pump - connection

Heat pump – business opportunities


Heat pump

Neogrid is offering 3 categories of services

- Avoid hours with high spot prices and high tariffs
- Monitoring and alarm
- PreHEAT optimised operation (reduced energy consumption, improved comfort)
- Optimised consumption of own or location power consumption

• Services towards electricity markets - Pool control of heat pumps

Services to DSO (reduce bottlenecks in LV/MV grid)

8/

Flexibility – an important parameter

Building characteristics

What determines flexibility?

Flexibility, the capability for a heat pump to shift its operation and still keep comfort in the building

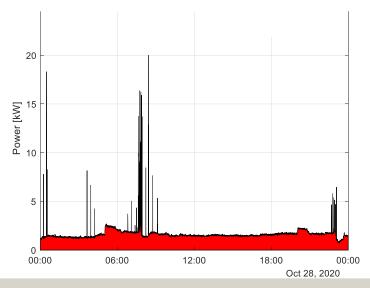
Important Building characteristics

- ↑ Accumulation tank
- Domestic Hot Water tank
- ↑ Frequency controlled heat pump
- ↑ Ground source vs air-air heat pump
- ↑ Building heat capacity
- ↑ Dimensioning temperature of heat pump
- ↑ Building time constant
- \downarrow Tight comfort limits in building
- \downarrow Limiting thermostats
- \downarrow Limiting thermostats
- ↑ Floor heating

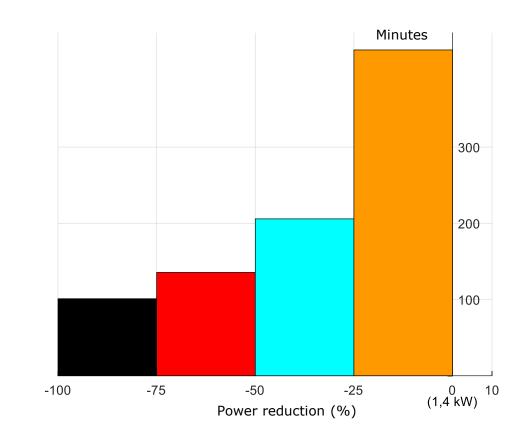
Flexibility

Two examples (New/old and over-/under dimensioned)

(newer)	(older)
• Key data - Consumption heat 2020: 9,4 MWh - Degrees days: 2390 - Heat loss \approx 0,16 kW/°C - Time constant \approx 90 timer - Heat capacity \approx 14 kWh/°C - HP \approx 6 kW heat - Ti _{dim} \approx -17 °C (@ Ti = 20 °C) • Flexibility calculation, example - Tout = 5 °C og comfort window = -1 °C - HP operation \approx 10 hours/day - t _{ΔT} \approx 6 hours	• Key data - Consumption heat 2020: 19,2 MWh - Degrees days: 2390 - Heat loss $\approx 0,33 \text{ kW/°C}$ - Time constant $\approx 45 \text{ timer}$ - Heat capacity $\approx 15 \text{ kWh/°C}$ - HP $\approx 6 \text{ kW heat}$ - Ti _{dim} $\approx 2 \text{ °C} (@ \text{Ti} = 20 \text{ °C})$ • Flexibility calculation, example - Tout = 5 °C og comfort window = -1 °C - HP operation $\approx 20 \text{ hours/day}$ - t _{ΔT} $\approx 3 \text{ hours}$

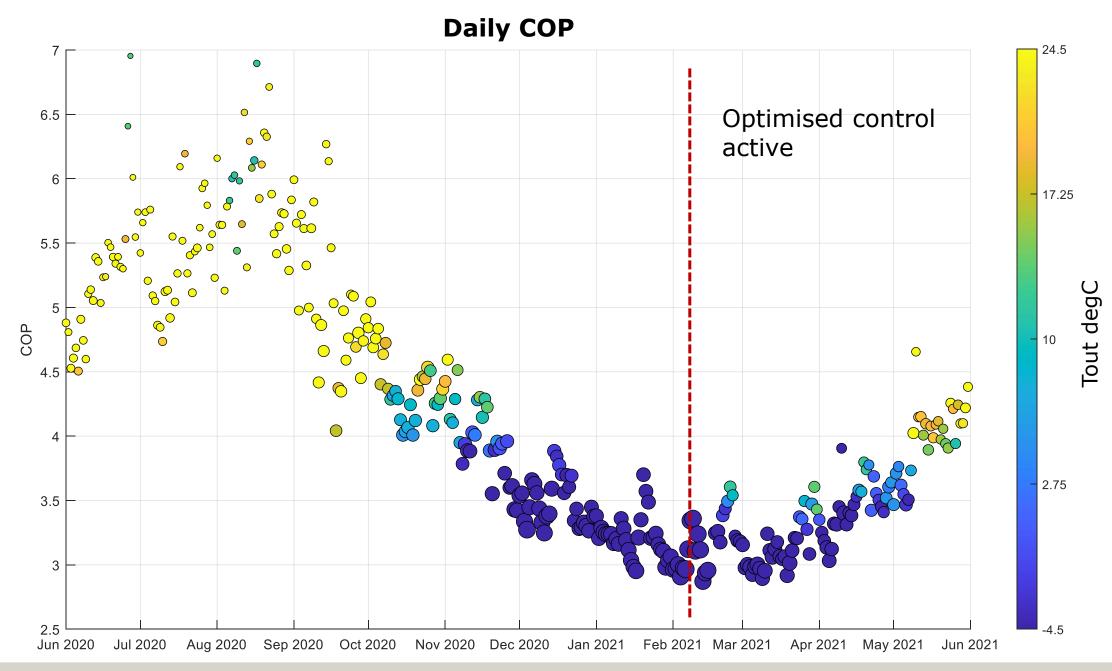

Accumulation tank

- 400 I water, 10 degrees dynamic \approx 4,7 kWh
- 400 I salt storage, 10 degrees dynamic $\approx 4*4.7$ kWh


Flexibility

Description

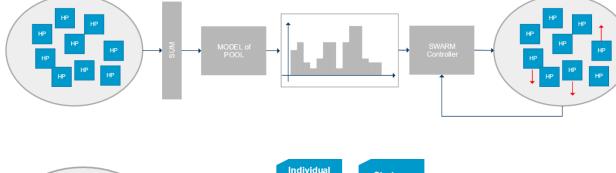
- Duration curve a typical day in october
 - How long can a service be delivered?
- Other important parameters
 - Response time
 - How fast can a service be delivered?
 - Rebound effect
 - How does the heat pump catch up



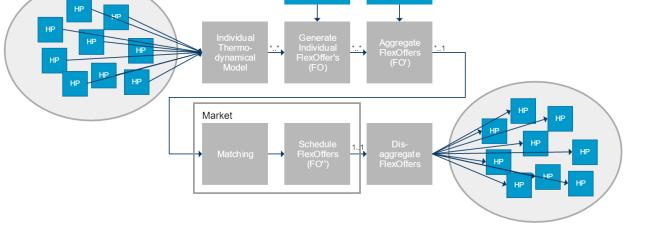
Services – Daily COP

Control strategy

Control of a Pool of heat pumps


2 principles are supported

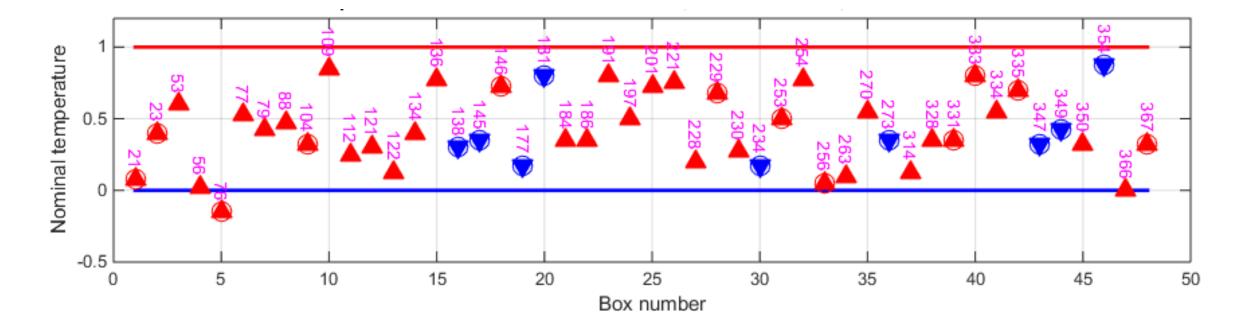
Neogrid has direct connection to each heat pump

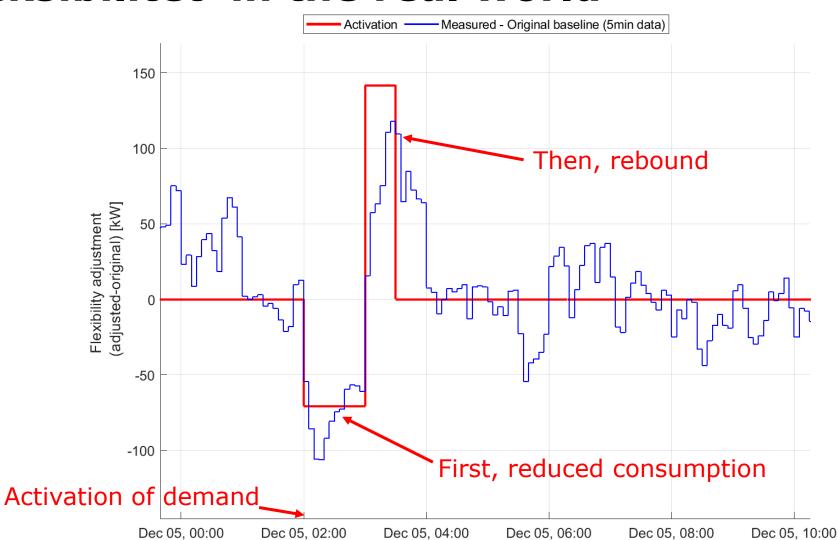

Neogrid Technologies ApS

- No indirect control via price signal
 - Rebound effect are fully controllable

- Control Methods
 - Control a SWARM
 - Control via FlexOffers
- Flexibility avalilable
 - Not symmetrical
 - Depending on weather
 - Sometimes 25% og peak power

Constrains


Strategy



Swarm controller

Practical example

Fleksibilitet `in the real world'

Barriers and strategy

Aggregator business

Challenges

- Getting heat pumps on board
- Cheap and easy access to heat pump complicated, missing standardization
- Delivering services to electricity market requires many heat pumps
- Delivering primary reserves from a pool of heat pumps is complicated
- Complicated business model, a long value chain
- BRP Aggregator heat pump owner
- Separate measurement of power and price settlement for the house owner
- For house owner pool participation should always be better than Neogrids local optimized operation
- Limited markets
- Only balancing market with regulating power exist today
 - Need close interaction with BRP so heat pumps can be pooled with other flexible devices to secure bid size
- DSO markets not really existing

Aggregator business

Neogrid status now

- Goal
- Having a pool of heat pumps prequalified at Energinet to deliver services to the electricity system
- Various heat pumps are being connected and tested
- Owners with cloud connected heat pump
- Importer of heat pump
- Producer of heat pump
- Complex setups: heat pumps + PV + EV + battery

Neogrid Technologies ApS

www.neogrid.dk

Further information at: Per D Pedersen Niels Jernes Vej 10 9220 Aalborg Ø pdp@neogrid.dk +45 3065 4710